double-slit experiment and em waves
authorAndrew Lorimer <andrew@lorimer.id.au>
Sat, 4 Aug 2018 12:30:47 +0000 (22:30 +1000)
committerAndrew Lorimer <andrew@lorimer.id.au>
Sat, 4 Aug 2018 12:30:47 +0000 (22:30 +1000)
physics/graphics/double-slit-interference.png [new file with mode: 0644]
physics/graphics/double-slit.png [new file with mode: 0644]
physics/graphics/em-waves.png [new file with mode: 0644]
physics/graphics/field-lines.png [new file with mode: 0755]
physics/graphics/huygen.png [new file with mode: 0644]
physics/graphics/longitudinal-waves.png [new file with mode: 0644]
physics/graphics/rays.png [new file with mode: 0644]
physics/graphics/refraction.png [new file with mode: 0644]
physics/graphics/transverse-waves.png [new file with mode: 0644]
physics/waves.md
diff --git a/physics/graphics/double-slit-interference.png b/physics/graphics/double-slit-interference.png
new file mode 100644 (file)
index 0000000..b3fea7a
Binary files /dev/null and b/physics/graphics/double-slit-interference.png differ
diff --git a/physics/graphics/double-slit.png b/physics/graphics/double-slit.png
new file mode 100644 (file)
index 0000000..2e90ca0
Binary files /dev/null and b/physics/graphics/double-slit.png differ
diff --git a/physics/graphics/em-waves.png b/physics/graphics/em-waves.png
new file mode 100644 (file)
index 0000000..2db7ba6
Binary files /dev/null and b/physics/graphics/em-waves.png differ
diff --git a/physics/graphics/field-lines.png b/physics/graphics/field-lines.png
new file mode 100755 (executable)
index 0000000..57abf1e
Binary files /dev/null and b/physics/graphics/field-lines.png differ
diff --git a/physics/graphics/huygen.png b/physics/graphics/huygen.png
new file mode 100644 (file)
index 0000000..9168dc0
Binary files /dev/null and b/physics/graphics/huygen.png differ
diff --git a/physics/graphics/longitudinal-waves.png b/physics/graphics/longitudinal-waves.png
new file mode 100644 (file)
index 0000000..9133b1b
Binary files /dev/null and b/physics/graphics/longitudinal-waves.png differ
diff --git a/physics/graphics/rays.png b/physics/graphics/rays.png
new file mode 100644 (file)
index 0000000..91be132
Binary files /dev/null and b/physics/graphics/rays.png differ
diff --git a/physics/graphics/refraction.png b/physics/graphics/refraction.png
new file mode 100644 (file)
index 0000000..5842e19
Binary files /dev/null and b/physics/graphics/refraction.png differ
diff --git a/physics/graphics/transverse-waves.png b/physics/graphics/transverse-waves.png
new file mode 100644 (file)
index 0000000..540220d
Binary files /dev/null and b/physics/graphics/transverse-waves.png differ
index f082d0f2d326fcfd98548cb701852bbc9341f0f1..d0d795c244a0c218695bbc894c74edbd18ea3e8b 100644 (file)
@@ -1,7 +1,7 @@
 # Waves
 
 ## Mechanical waves
-- need a medium to travel through
+- need a medium to travel through (fields for electromagnetic waves)
 - cannot transfer energy through vacuum
 - individual particles have little movement regardless of the distance of wave
 - **transfer of energy without net transfer of matter**
 
 **Direction of motion is parallel to wave**
 
-![](/mnt/andrew/graphics/longitudinal-waves.png)
+![](graphics/longitudinal-waves.png)
 
 ### Transverse waves
 **Direction of motion is perpendicular to wave**
 - rarefactions (expansions)
 - compressions
-![](/mnt/andrew/graphics/transverse-waves.png)
+![](graphics/transverse-waves.png)
 
 ### Measuring mechanical waves
 
@@ -38,7 +38,7 @@ $v=f \lambda \quad$(speed: displacement per second)
 - applies to all types of wave
 - only affects apparent $f$; actual $f$ is constant
 
-When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}. Hence, $w_n$ reaches the observer sooner than $w_{n-1}, increasing "apparent" wavelength.
+When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. Hence, $w_n$ reaches the observer sooner than $w_{n-1}$, increasing "apparent" wavelength.
 
 
 
@@ -64,7 +64,7 @@ Two- or three-dimensional *wave fronts* can be reflected, e.g. waves at a beach.
 
 Direction of motion of wave fronts can be shown by arrows, called *rays*, which are perpendicular to the wave front:
 
-![](/mnt/andrew/graphics/rays.png)
+![](graphics/rays.png)
 
 Angle of incidence $\theta_i =$ angle of reflection $\theta_r$
 - Normal: $\perp$ to wall
@@ -90,8 +90,6 @@ $f = {nv \div 4l}\quad$ (frequency for $n_{th}$ harmonic at length $l$ and speed
 
 ## Light
 
-
-
 Newton - light as a particle
 - light speeds up as it travels through a solid medium
 
@@ -100,15 +98,15 @@ Hooke - light as a wave
 
 ### Huygen's principle
 **Each point on a wavefront can be considered a source of secondary wavelets**
-![](/mnt/andrew/graphics/huygen.png)
+![](graphics/huygen.png)
 
 ### Refraction
 **Change in direction caused by change in speed** e.g. prism
 $\Delta v$ depends on $\lambda$, so wavelengths become "split"
-![](/mnt/andrew/graphics/refraction.png)
+![](graphics/refraction.png)
 
 Refractive index of a medium depends $\Delta v$ from $c$
-$n={c \over v}\quad$ (refractive index of  poop medium)
+$n={c \over v}\quad$ (refractive index of medium)
 $n_1v_1=n_2v_2$ (equivalence between media)
 
 ### Snell's law
@@ -127,8 +125,44 @@ $\therefore \theta_c = {n_2 \over n_1}$
 
 ### Double Slit
 
+![](graphics/double-slit.png)
+**(a) Double slit as theorised by particle model** - "streams" of photons are concentrated in bright spots
+**(b) Double slit as theorised by wave model** - waves disperse onto screen (overlapping)
+
+Young's double slit experiment supports wave model:
 - parallel slits of thickness comparable to $\lambda$
 - multiple wave fronts combine to form constructive / destructive interference
-- fringes - points of constructive interference
-- bright spot in centre of slits
+- fringes - points of constructive interference (bright)
+- constructive interference when waves are **coherent** (in phase)
+- fringe in centre of slits
 - solve path difference using pythag
+
+![](graphics/double-slit-interference.png)
+
+Path difference $pd = |S_1P-S_2P|$ for point $p$ on screen
+
+Constructive interference when $pd = n\lambda$ where $n \in [0, 1, 2, ...]$
+Destructive interference when $pd = (n-{1 \over 2})\lambda$ where $n \in [1, 2, 3, ...]$
+
+Fringe separation:
+$$\Delta x = {{\lambda l }\over d}$$
+
+where
+$\Delta x$ is distance between fringes
+$l$ is distance from slits to screen
+$d$ is separation between sluts ($=S_1-S_2$)
+
+## Electromagnetic waves
+
+![](graphics/em-waves.png)
+
+- electric waves and magnetic waves are perpendicular to each other due to Faraday's law
+
+Wave equation:
+
+$$c = f \lambda$$
+
+where
+$c$ is velocity (speed of light in this case)
+$f$ is frequency (Hz)
+$\lambda$ is wavelength (m)