## Concentration
- amount of solute per volume of solvent - e.g. g / L
- relative terms - "concentrated" or "dilute"
+- mg / L = ppm = $\mu$g / g
## Exact values
+
+
## $\sin$ and $\cos$ graphs
$$f(x)=a \sin(bx-c)+d$$
Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
+<<<<<<< HEAD
+**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
+
+## Solving trig equations
+
+1. Solve domain for $n\theta$
+2. Find solutions for $n\theta$
+3. Divide solutions by $n$
+
+$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
+$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
+$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
+$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
+=======
### Amplitude
Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
range is $R$
roots at $x={k\pi \over n}$
asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$
+>>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe
Cartesian equation for hyperbolas ($a$ and $b$ are dilation factors):
$${(x-h)^2 \over a^2} - {(y-k)^2 \over b^2} = 1$$
-Asymptotes at $y-k=\pm {b \over a}(x-h$)
+Asymptotes at $y=\pm {b \over a}(x-h)+k$
+To make hyperbola up/down rather than left/right, swap $x$ and $y$
## Parametric equations