Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
-<<<<<<< HEAD
**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
## Solving trig equations
$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
-=======
+
### Amplitude
Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
period $T$ is $\pi \over n$
range is $R$
roots at $x={k\pi \over n}$
-asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$
->>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe
+asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
+**Asymptotes should always have equations and arrow pointing up**